Highly time-resolved metabolic reprogramming toward differential levels of phosphate in Chlamydomonas reinhardtii
Cheol-Ho Jang, Gayeon Lee, Yong-Cheol Park and Do Yup Lee
Journal of Microbiology and Biotechnology Accepted
Understanding phosphorus metabolism in photosynthetic organisms is important in that it is closely associated with enhanced crop productivity and pollution management for natural ecosystems (e.g. algal blooming). Accordingly, we exploited highly time-resolved metabolic responses to different levels of phosphate deprivation in C. reinhardtii, a photosynthetic model organism. We conducted non-targeted primary metabolite profiling using gas-chromatography time-of-flight mass spectrometric analysis. Primarily, we systematically identified main contributors to degree-wise responses corresponding to the deprivation levels of phosphate. And we systematically characterized the metabolite sets of exclusive phosphate condition specificity and interaction with culture time. Among them were various types of fatty acids that were most dynamically modulated by the phosphate availability along with the time-course in addition to phosphorylated compounds.
Contact Us
Science Building Room No. 204-205, Kookmin University 861-1 Jeongrung-dong, Sungbuk-gu, Seoul 136-702 Tel: +82-2-910-5596(5462), Fax: +82-2-910-5739 E-mail: ycpark@kookmin.ac.kr